一、深度学习理念?
深度学习是一种主动的、探究式的、理解性的学习,关注学习者高阶思维能力的发展,因此成为当前教学理论的研究热点。但从实践层面来看,很多中小学校对什么是深度学习、如何开展深度教学,还存在诸多模糊的甚至是错误的认识。本期专题从深度学习的本质、理念、模式等方面,探讨如何将深度学习贯穿到基础教育体系中,供读者参考。
从深度学习走向深度教学,一方面是教与学的一致性决定的,另一方面是当前中小学课堂教学普遍存在的局限性决定的。教与学的关系既不是对立关系,也不是对应关系,而是一种具有相融性的一体化关系,离开了教无所谓学,离开了学也无所谓教。学生真正意义上的深度学习需要建立在教师深度教导、引导的基础之上。从本质上看,教育学视野下的深度学习不同于人工智能视野下的深度学习,不是学生像机器一样对人脑进行孤独的模拟活动,而是学生在教师引导下,对知识进行的“层进式学习”和”沉浸式学习”。“层进”是指对知识内在结构的逐层深化的学习,“沉浸”是指对学习过程的深刻参与和学习投入。离开了教师的教学和引导,学生何以“沉浸”?因此,深度学习只有走向深度教学才更具有发展性的意义和价值。同时,我国新一轮基础教育课程改革以来,课堂教学改革依然存在着诸多表层学习、表面学习和表演学习的局限性,“学习方式的转变”往往演变成了教学形式的改变,诸如教与学在程序上的简单翻转和在时间上的粗暴分配。其所体现出来的知识观、价值观、教学观、过程观依然陈旧落后,以学科知识、学科能力、学科思想和学科经验的融合为核心的学科素养依然未能得到实质性的渗透。
深度教学的“深度”是建立在完整而深刻地处理和理解知识的基础之上的。艾根在深度学习的研究中,首次从知识论的角度,论述了深度学习的“深度”的涵义。他认为“学习深度”具有三个基本标准,即知识学习的充分广度(Sufficient Breadth)、知识学习的充分深度(Sufficient Depth)和知识学习的充分关联度(Multi-Dimensional Richness and Ties)。这三个标准,也是深度学习的核心理念。
第一,知识学习的充分广度。充分的广度与知识产生的背景相关,与知 识对人生成的意义相关,与个体经验相关,也与学习者的学习情境相关。如果教学把知识从其赖以存在的背景、意义和经验中剥离出来,成为纯粹的符号,便成为无意义的符号、无根基的概念知识。知识具有强烈的依存性,无论是自然科学的知识还是社会科学或人文学科的知识,都是特定的社会背景、文化背景、历史背景及其特定的思维方式的产物。离开了知识的自然背景、社会背景、逻辑背景,前人创造的知识对后人而言几乎不具有可理解性。随着深度学习的兴起,旨在以广度促进理解的“无边界学习”日益引起人们的重视。可见,知识的充分广度,其实是为理解提供多样性的支架,为知识的意义达成创造了可能性和广阔性基础。
第二,知识学习的充分深度。知识的充分深度与知识所表达的内在思想、认知方式和具体的思维逻辑相关,深度学习把通过知识理解来建立认识方式,提升思维品质,特别是发展批判性思维作为核心目标。所以说,深度学习是一种反思性学习,是注重批判性思维品质培养的学习,同时也是一种沉浸式、层进式的学习。深度学习强调学习过程是从符号理解、符号解码到意义建构的认知过程,这一过程是逐层深化的。
第三,知识学习的充分关联度。知识的充分关联度,是指知识学习指向与多维度地理解知识的丰富内涵及其与文化、想象、经验的内在联系。知识学习不是单一的符号学习,而是对知识所承载的文化精神的学习。同时,通过与学生的想象、情感的紧密联系,达到对知识的意义建构。从广度,到深度,再到关联度,学生认知的过程是逐层深化的。所谓意义建构,即从公共知识到个人知识的建立过程,都需要建立在知识学习的深度和关联度之上。
二、深度学习知识
深度学习知识
深度学习是机器学习领域中备受关注的一个技术分支,它通过模拟人脑的神经网络结构,实现了对大量数据的复杂特征提取和模式识别能力。随着计算机计算能力的提升以及数据规模的不断扩大,深度学习在人工智能领域的应用也越来越广泛。
深度学习的基础
深度学习的基础是人工神经网络,它是由大量的人工神经元组成的网络结构。每个人工神经元将输入进行加权处理,并通过激活函数对加权和进行非线性变换,最终输出一个结果。多个人工神经元连接在一起,形成了神经网络。深度学习的特点在于神经网络的层数较深,每一层的输出又作为下一层的输入,通过层层传递信息,完成对复杂特征的提取。
深度学习的应用场景
深度学习已经在许多领域取得了显著的成果。在计算机视觉领域,通过深度学习可以实现图像分类、目标检测、图像分割等任务;在自然语言处理领域,深度学习可以用于文本分类、机器翻译、情感分析等任务;在语音识别领域,深度学习可以用于语音识别、语音合成等任务。此外,深度学习还可以应用于推荐系统、智能驾驶、金融分析等领域。
深度学习的关键技术
深度学习的关键技术包括神经网络的设计、训练与优化。神经网络的设计需要考虑网络的层数、每层的神经元个数、激活函数的选择等。训练神经网络通常使用反向传播算法,通过最小化损失函数来调整网络参数,使得网络输出与真实值的误差最小化。同时,为了避免过拟合现象的发生,通常会在训练过程中引入正则化技术,如L1、L2正则化以及dropout等。优化算法的选择也对深度学习的性能影响很大,常见的优化算法包括梯度下降算法、动量法、Adam等。
深度学习的挑战
尽管深度学习在很多领域取得了显著的成果,但仍然存在一些挑战。首先,深度学习需要大量的训练数据,但在一些特定任务上,获取大规模标注数据非常困难。其次,深度学习的模型往往具有大量的参数,需要较长的训练时间和大量的计算资源。此外,深度学习的解释性较差,很难解释模型的预测结果,这在某些涉及安全性和隐私的场景中是个问题。
结语
深度学习作为一种强大的机器学习技术,正在推动人工智能领域的快速发展。随着硬件技术的进步和算法的改进,相信深度学习在未来会取得更多突破性的成果,为人类带来更多的便利和创新。
三、什么是深度学习?
深度学习是机器学习的一个子集,指人工神经网络学习大量数据,使机器更接近于最初的目标——人工智能。
深度学习的本质是个体能够将其在一个情境中所学运用于新情境的过程(即“迁移”),所对应的素养划分为三个领域:认知领域、人际领域和自我领域。
深度学习就是转知成智、转识成慧、化凡成圣,解决问题层次逐级提高的学习,从当前外控到内驱力驱动的转型学习,从当前同质化整齐划一的学习向个性化选择性学习变革的学习1
四、中国深度学习之父?
孙剑的第一个深度学习博士
跟旷视研究院院长孙剑的经历一样,张祥雨也是一名“土生土长”的西安交大人,从本科到博士都在西安交大就读,在大三那年(2011年),张祥雨拿下了美国大学生数学建模竞赛(MCM)特等奖提名奖(Finalist),当时创下西安交大参加该项竞赛以来历史最好成绩。
凭借这次获奖经历,张祥雨获得了后来到微软亚洲研究院实习的资格。
获得实习资格的有三人,但最终只有一个人能留下。当时还在微软亚洲研究院担任首席研究员的孙剑给这三人出了一道题:用一个月的时间,将人脸检测的速度提升十倍。
五、深度学习,包括哪些?
深度学习(deep learing)是机械学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。至今已有数种深度学习架构,如深度神经网络、卷积神经网络和深度置信网络和递归神经网络已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。另外。“深度学习”已成为类似术语,或者说是神经网络的品牌重塑。
六、语言学习属于什么学习?
现在英语学习非常流行,许多幼儿园都开设了英语课程。原版进口的幼儿英语教材让孩子们从小就学习英语教材。传统的英语语言学习,被粗暴地归为背单词和做题,而实际上真正的语言学习有更多的内容,那么英语语言学习是在学习什么呢,语言知识有哪些类型呢?
在二语习得理论中,关于语言知识的分类,学术界最具代表性的是Polanyi(1958)提出的显性知识与隐性知识分类说。“显性知识”是二语学习者能意识到、能说出来的语言规则知识,“隐性知识”则是二语学习者能用但表达不出来的直觉知识。由于学习是个动态的复杂过程,显性/隐性知识难以准确测量,因此很难界定,显/隐性知识之间有无接口,能否互相转化,也仍然存在很多争议。Bialystok(1994)认为通过不断地练习或训练,不但显性知识可以转换成隐性知识,而且隐性知识也可以显性化。国内一些关于显性/隐性知识关系的实证研究也显示:显性/隐性知识在一定的条件下可以相互转化。
相对于波兰尼(Polanyi)的知识分类,认知心理学的知识分类:陈述性知识与程序性知识,由于有着认知神经科学的依据(两种知识在人脑中分别有不同的表征区域)而显得更为明确。在语言学习中,语言结构知识(语音、词汇、语法的基本规则)属于陈述性知识,具有显性特征;而语用知识(如何在不同的语境中正确地使用语言结构知识的规则)属于程序性知识,具有隐性特征。显性知识与隐性知识的区别在于是否能进行外部表征(语言描述),而程序性知识与陈述性知识的区分则在于其内部表征的层次和区域不同。认知心理学认为,具有隐性属性的程序性知识是可以被外部表征的。这为语言知识的可视化提供了理论依据。
按照认知心理学的假设,知道或具有某种知识,那么你的头脑中必然存在着该事物的心理表征,也就是说你使用了知识表征(knowledge representation)。符号是表征的基本形式。表征可分为内部表征(internal representation)和外部表征(external representation)。其中,物理的、客观的表征形式构成知识的外部表征,体现为语言表征或图形表征等,比如,文字符号、地图和照片等。
七、深度学习就业前景好吗?
深度学习应用领域还是十分广泛的,包括电商,智能制造,医疗,金融,安防,司法,游戏,环境等,而且现在这方面的人才缺口较大,如果能学好深度学习,那么就业前景还是很好的。
八、深度学习是什么专业?
机器学习(ML, Machine Learning)领域中一个新的研究方向,目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据,也就是人工智能。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。
九、如何构建深度学习课堂?
首先要形成能够深度讨论的课堂学习氛围,其次对深度讨论的疑问要进行正确引导,提高深度学习的效率,最后对深度学习所得到的知识在课后要进行第一时间的温习巩固
十、机器学习算法和深度学习的区别?
答:机器学习算法和深度学习的区别:
1、应用场景
机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。
深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。
2、所需数据量
机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。
3、执行时间
执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比平时更长的时间。相对而言,机器学习算法的执行时间更少。
- 相关评论
- 我要评论
-